Reduction of Co(III) Oxidants by Ti(III)

M. ORHANOVIC

Institut Ruder Boskovic, Zagreb, Yugoslavia

J. E. EARLEY

Department of Chemistry, Georgetown University, Washington, D.C. 20057, U.S.A. (Received November 29, 1974)

Cope, Miller and Fraser¹ reported that Ti³⁺ reacts with $Co(NH_3)_5 Cl^{2+}$ in a fairly rapid acid-independent reaction in Cl⁻ and SO₄²⁻ media containing substantial amounts of ClO₄. They also reported complicated anion effects. Duke and Quinney² had previously studied the reaction of Ti³⁺ with ClO₄ and kinetically determined that the stability constant of the TiCl²⁺ complex was 2.2 at 40 °C. Rosseinsky³ considered data in the literature on reactions of simple reductants M²⁺ with various Co(III)A₄XY species. He correlated the differences in selectivity (with respect to variations in Y) in terms of a semi-theoretical model which leads to the expectation that redox potential of M^{2+} determines the selectivity of M^{2+} for reaction with various Co(III) species. We now report studies of reaction of Ti³⁺ in various aqueous media which call into question, to a more or less severe degree, all of the reports mentioned above.

Solutions in Cl⁻, CF₃SO₃ and *para*toluenesulfonate (hereafter tosylate or Tos⁻) media, [Co(NH₃)₅Cl]Cl₂ and *cis* and *trans*-[Co(en)₂Cl₂]Cl were all prepared by standard methods, and the reaction of Co(III) oxidants with Ti(III) was studied spectrophotometrically at 25.2 °C. In the tosylate media used, zero-order kinetics were observed and results were erratic. Various methods of recrystallization of HTos did not change these results. In CF₃SO₃ media of constant acidity, the Co(III)-Ti³⁺ reaction proceeded with 1/1 stoichiometry and reproducibly followed the rate law,

$$v = k[Ti^{3+}][Co(III)].$$

The same kinetic behaviour (including the value of k) was observed in chloride media as in $CF_3SO_3^-$ media. We find no kinetic evidence of $TiCl^{2+}$.

The acid dependence of k was adequately fitted by

$$k = \frac{k_0 + k \mathrm{K} [\mathrm{H}^+]^{-1}}{1 + \mathrm{K} [\mathrm{H}^+]^{-1}}$$

where the values of parameters are given in Table I.

TABLE I. Kinetic Parameters for Co(III)–Ti³⁺ Reactions at 25.2 °C and Ionic Strength 1 M in Cl⁻ or CF₃SO₃⁻ Media.

Oxidant	$k_0 \times 10^3, M^{-1} \text{ sec}^{-1}$	$K \times 10^3,$ M^{-1}	k M^{-1} sec ⁻¹
Co(NH ₃), Cl ²⁺	<.1	4.6 ^a 4.6 ^b	.48
cis-Co(NH ₃) ₅ Cl ⁺ ₂	2		.75
trans-Co(NH ₃) ₅ Cl ₂ ⁺	9	4.6 ^c	2.8

^a Determined by standard methods from 26 kinetic runs. ^b Assumed, fitted 11 kinetic runs within $\pm 5\%$. ^c Assumed, fitted 9 kinetic runs within $\pm 6\%$.

The value of K measured kinetically is consistent with the hydrolysis constant of Ti^{3^+} measured⁴ potentiometrically in Br⁻ media (K_h = 6.9×10^{-3}). We therefore infer that TiOH²⁺ is the reductant in all three reactions. The values of k that we report are several orders of magnitude less than that reported by Fraser, *et al.* We find more rapid rates and chlorideinhibition in perchlorate media. We conclude that in such media paths involving ClO₄⁻ are dominant but may be quenched by Cl⁻.

The Ti(IV) product would be expected to be TiO²⁺ or a related polymer (cf. VO²⁺). The efficiency of TiOH²⁺ may be related to a reduced barrier due to less difference in structure between the Ti(III) and Ti(IV) forms involved. Since TiOH²⁺ is intermediate in reducing power between V²⁺ and Ru²⁺, one would expect³ that the difference between the *cis* and *trans* oxidants would be more than that observed for V²⁺ but less than observed for Ru²⁺. The observation of a smaller difference suggests that additional factors (*e.g.*, Ti(III)–Co(III) interaction prior to the transition state) are involved.

This work was carried out at Georgetown University under Grant AF 71-2003 from the Air Force Office of Scientific Research.

References

- 1 V. W. Cope, R. G. Miller and R. T. M. Fraser, J. Chem. Soc. (A), 301, 1967.
- 2 F. R. Duke and P. R. Quinney, J. Am. Chem. Soc., 76, 3800 (1954).
- 3 D. R. Rosseinsky, Chem. Commun., 226 (1972).
- 4 R. L. Pecsok and A. N. Fletcher, *Inorg. Chem.*, 1, 155 (1962).